• High space-bandwidth in quantitative phase imaging using partially spatially coherent digital holographic microscopy and a deep neural network 

      Butola, Ankit; Kanade, Sheetal Raosaheb; Bhatt, Sunil; Dubey, Vishesh Kumar; Kumar, Anand; Ahmad, Azeem; Prasad, Dilip K.; Senthilkumaran, Paramasivam; Ahluwalia, Balpreet Singh; Mehta, Dalip Singh (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-11-16)
      Quantitative phase microscopy (QPM) is a label-free technique that enables monitoring of morphological changes at the subcellular level. The performance of the QPM system in terms of spatial sensitivity and resolution depends on the coherence properties of the light source and the numerical aperture (NA) of objective lenses. Here, we propose high space-bandwidth quantitative phase imaging using ...
    • Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network 

      Joshi, Deepa; Butola, Ankit; Kanade, Sheetal Raosaheb; Prasad, Dilip K.; Amitha Mithra, Mithra; Singh, N.K.; Bisht, Deepak Singh; Mehta, Dalip Singh (Journal article; Tidsskriftartikkel; Peer reviewed, 2021-01-01)
      Identification of the seed varieties is essential in the quality control and high yield crop growth. The existing methods of varietal identification rely primarily on visual examination and DNA fingerprinting. Although the pattern of DNA fingerprinting allows precise classification of seed varieties but fraught with challenges such as low rate of polymorphism amongst closely related species, destructive ...